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Overview

• Probabilistic model checking technology…
− formulated, implemented and evaluated
− usable and useful!

• Scalability challenge
− state-space explosion has not gone away…

• Some approaches to tackle the problem
− parallelisation
− statistical model checking
− abstraction
− model reductions
− more…
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Parallelisation

• Parallelisation of probabilistic model checking
− distribution of storage/computation costs
− of growing importance, e.g. multicore architectures

• Ease of distribution depends on computation task
− reachability? numerical computation?

• Potentially promising for symbolic approaches – less I/O
− compactness enables storage of the full matrix at each node
− approaches using Kronecker [Kemper et al.] and MTBDDs

• Here 
− focus on steady-state solution for CTMCs
− use wavefront techniques
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Numerical solution for CTMCs

• Recall, steady-state probability distribution 
− can be obtained by solving linear equation system:

where Q is infinitesimal generator matrix of C (C irreducible)

• We consider the more general problem of solving:

A·x = b where A is n×n matrix, b vector of length n

• Numerical solution techniques
− direct, not feasible for very large models
− iterative stationary (Jacobi, Gauss-Seidel), memory efficient
− projection methods (Krylov, CGS, …), fastest convergence, but 

require several vectors

1)s(π   and   0π Ss
CC ==⋅ ∑ ∈

Q



5

Gauss-Seidel

• Computes one matrix row at a time
• Updates ith element using most up-to-date values 
• Computation for a single iteration, n×n matrix:

1. for (0 ≤ i ≤ n-1)
2. xi := (bi - ∑0≤j≤n-1, j≠i Aij · xj) / Aii

• Can be reformulated in block form, N×N blocks, length M
1. for (0 ≤ p ≤ N-1)
2. v := b(p) 
3. for each block A(pq) with q≠p
4. v := v - A(pq) x(q)
5. for (0 ≤ i ≤ M-1,i≠j)  
6. x(p)i := (vi - Σ0≤j≤M A(pp)ij · x(p)j ) / A(pp)ii

computes one 
matrix block 

at a time
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Parallelising Gauss-Seidel

• Inherently sequential for dense matrices
− uses results from current and previous iterations

• Permutation has no effect on correctness of the result
− can be exploited to achieve parallelisation for certain sparse

matrix problems, e.g. [Koester, Ranka & Fox 1994]
• The block formulation helps, although 

− requires row-wise access to blocks and block entries
− need to respect computational dependencies
− i.e. when computing vector block x(p)

use values from current iteration for blocks q < p
previous iteration for q > p

• Idea: propose to use wavefront techniques
− extract dependency information
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Symbolic techniques for CTMCs

• Explicit matrix representation
− intractable for very large matrices

• Symbolic representations
− exploit regularity to obtain compact matrix storage
− also faster model construction, reachability, etc
− sometimes also beneficial for vector storage
− include Multi-Terminal Binary Decision Diagrams (MTBDDs), 

matrix diagrams and Kronecker representation

• Here, work with MTBDDs and derived structures  
− underlying data structure of the PRISM model checker
− enhanced with caching-based techniques that substantially 

improve numerical efficiency
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MTBDD data structures

• Recursive, based on Binary Decision Diagrams (BDDs)
− stored in reduced form (DAG), with isomorphic subtrees

stored only once
− exploit regularity to obtain compact matrix storage
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Matrices as MTBDDs

• Representation
− root represents the whole matrix
− leaves store matrix entries, reachable by following paths from 

the root node
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Matrices as MTBDDs

• Recursively descending through the tree
− divides the matrix into submatrices
− one level, divide into two submatrices
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Matrices as MTBDDs

• Recursively descending through the tree
− provides a convenient block decomposition
− two levels, divide into four blocks
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A two-layer structure from MTBDDs

• Block decomposition, store as two sparse matrices
− enables fast row-wise access to blocks and block entries

[Par02, Meh04b]
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Wavefront techniques

• An approach to parallel programming, e.g. [Joubert et al ’98]
− divide computation into tasks, form a schedule

• A schedule contains several wavefronts
− each wavefront comprises algorithmically independent tasks 
− i.e. correctness is not affected by execution order

• The execution is carried out from one wavefront to another
− tasks assigned according to the dependency structure
− each wavefront contains tasks that can be executed in parallel

• Our approach
− tasks are determined by matrix blocks
− fast extraction of dependency information from MTBDD matrix
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A two-layer structure from MTBDDs

• Block decomposition, store as two sparse matrices
− enables fast row-wise access to blocks and block entries

[Par02,Meh04b]
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Dependency graph from MTBDD

• By traversal of top levels of MTBDD, as for top layer
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Generating a wavefront schedule

• By colouring the dependency graph…

• Can generate a schedule to compute in waves from one 
colour to another
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Implementation

• Symbolic approach particularly well suited to wavefront
parallelisation of Gauss-Seidel
− can store full matrix at each node
− hence reduced communication costs, since only vector blocks 

need to be exchanged

• Runs on Ethernet and Myrinet-enabled PC cluster [ZPK05a]
− use MPI (the MPICH implementation)
− prototype extension for PRISM
− various optimisations, load-balancing, etc

• Evaluated on a range of benchmarks
− good overall speedup 
− within PRISM, currently only steady-state
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Experimental results: models

• Parameters and statistics of models
− Include Kanban 9,10 and FMS 13, previously intractable
− All compact, requiring less than 1GB
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Experimental results: time

• Total execution times (in seconds) with 1 to 32 nodes
− Termination condition maximum relative difference 10-6

− Block numbers selected to minimise storage
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Experimental results: FMS speed-up
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Experimental results: Kanban speed-up
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Overview

• Probabilistic model checking technology…
− formulated, implemented and evaluated
− usable and useful!

• Scalability challenge
− state-space explosion has not gone away…

• Some approaches to tackle the problem
− parallelisation
− statistical model checking
− abstraction
− model reductions
− more…
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Approximate verification

• Approximate probabilistic model checking
− sampling using Monte Carlo discrete-event simulation
− performed at modelling language level
− no need to build the probability/rates matrix
− more easily extended to a wider range of properties
− potentially huge number of samples for accurate answers

• Tool support:
− APMC [LHP06] – PCTL/LTL for D/CTMCs, distributed version
− also supported in PRISM (distributed version coming soon)

• Statistical hypothesis testing, acceptance sampling 
− “bounded” properties, e.g. P<p[φ1 U≤t φ2]
− see e.g. Ymer [YS02]
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Statistical probabilistic model checking

• Numerical method
− requires the solution of a linear equation system
− highly accurate results
− expensive for systems with many states
− in practice, approximate since solution usually iterative

• Statistical method
− work from the syntactic model description
− low memory requirements
− adapts to difficulty of problem (sequential)
− expensive if high accuracy is required
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Numerical solution method

• Recall to verify P≥p [φ1 U[0,t] φ2 ] for CTMC C:
− compute probability of being in a state satisfying φ2 at time t 

in modified model C[φ2][¬φ1 ∧¬φ2]

− using uniformisation, where γq·t,i are Poisson coefficients
− P≥p [φ1 U[0,t] φ2 ] holds in state s iff Prob(s, φ1 U[0,t] φ2 )≥p

• Truncate the summation using Fox-Glynn with error ε
− if computed probability≥p, then Prob(s,φ1 U[0,t] φ2)≥p
− if computed probability≤p-ε, then Prob(s,φ1 U[0,t] φ2)≤p 
− otherwise, we cannot tell if P≥p [φ1 U[0,t] φ2 ] holds
− complexity O(q·t) matrix-vector multiplications
− but ε = 10-10 possible with no performance degradation
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Statistical solution method [YS02]

• Use discrete event simulation to generate sample paths
• Use sequential acceptance sampling to verify probabilistic 

properties, for path formula ψ
− hypothesis: Prob(s,ψ)≥p

• Choose error bounds α,β
• Probability of false negative: ≤α

− we say that Prob(s,ψ)≥p is false when it is actually true
• Probability of false positive: ≤β

− we say that Prob(s,ψ)≥p is true when it is actually false

Not estimation!
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Performance of test

actual probability θ=Prob(s,ψ)
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Ideal performance

actual probability θ=Prob(s,ψ)
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Actual performance

θ-δ θ+δ

Indifference region

actual probability θ=Prob(s,ψ)
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Sequential hypothesis testing

• Hypothesis: Prob(s,ψ)≥p

True, false,
or another
sample?

Number of samples
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Sequential hypothesis testing

• We can find an acceptance line and a rejection line given θ, 
δ, α and β

Aθ,δ,α,β(n)

Rθ,δ,α,β(n)

RejectReject

AcceptAccept

Continue samplingContinue sampling
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Start here

Generate samples
using simulation

Continue until a
line is crossed
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Verifying probabilistic properties

• Verify Prob(s,ψ)≥p with error bounds α and β
− generate sample paths using simulation
− verify ψ over each sample path
− if ψ is true, then we have a positive sample
− if ψ is false, then we have a negative sample
− use sequential acceptance sampling to test the hypothesis

• Complexity of the method
− number of samples: complex dependency on θ, δ, α and β
− length of sample paths

• expected length at most q·t (t time bound in ψ)
• shorter paths if ¬φ1 ∨ φ2 is satisfied early

− no direct dependence on size of state space
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Tandem Queuing Network (results)
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Tandem Queuing Network (results)
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Overview

• Probabilistic model checking technology…
− formulated, implemented and evaluated
− usable and useful!

• Scalability challenge
− state-space explosion has not gone away…

• Some approaches to tackle the problem
− parallelisation
− statistical model checking
− abstraction
− model reductions
− more…
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Some ongoing research areas

• Abstraction and refinement, see e.g. [DJJL01, KNP06a]
− construct smaller, abstract model by removing 

information/variables not relevant to property being checked, 
iteratively refine abstraction if analysis fails

• Symmetry reduction [DM06, KNP06b]
− exploit replication of identical components

• Partial order reduction, see e.g. [BGC04, DN04, GNB+06]
− exploit commutativity of concurrently executed transitions 

• Bisimulation quotient [KKZJ07]
− exploit bisimilarity to obtain reduced model
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Future topics

• Counterexamples for probabilistic model checking
− compute tree-like counterexamples, see e.g. [HK07]

• Directed probabilistic model checking [AHL05]
− explore the model state space using heuristics

• Predicate abstraction for probabilistic models
− reduce possibly infinite-state systems  

• Compositionality, see e.g. [dAHJ01, Che06, EKVY07]
− analyse full model based on analysis of sub-components
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