
Probabilistic Model CheckingProbabilistic Model Checking

Part 11 Part 11 -- Advanced TopicsAdvanced Topics

Marta Marta KwiatkowskaKwiatkowska
GethinGethin NormanNorman

Dave ParkerDave Parker

University of OxfordUniversity of Oxford

2

Overview

• Probabilistic model checking technology…
− formulated, implemented and evaluated
− usable and useful!

• Scalability challenge
− state-space explosion has not gone away…

• Some approaches to tackle the problem
− parallelisation
− statistical model checking
− abstraction
− model reductions
− more…

3

Parallelisation

• Parallelisation of probabilistic model checking
− distribution of storage/computation costs
− of growing importance, e.g. multicore architectures

• Ease of distribution depends on computation task
− reachability? numerical computation?

• Potentially promising for symbolic approaches – less I/O
− compactness enables storage of the full matrix at each node
− approaches using Kronecker [Kemper et al.] and MTBDDs

• Here
− focus on steady-state solution for CTMCs
− use wavefront techniques

4

Numerical solution for CTMCs

• Recall, steady-state probability distribution
− can be obtained by solving linear equation system:

where Q is infinitesimal generator matrix of C (C irreducible)

• We consider the more general problem of solving:

A·x = b where A is n×n matrix, b vector of length n

• Numerical solution techniques
− direct, not feasible for very large models
− iterative stationary (Jacobi, Gauss-Seidel), memory efficient
− projection methods (Krylov, CGS, …), fastest convergence, but

require several vectors

1)s(π and 0π Ss
CC ==⋅ ∑ ∈

Q

5

Gauss-Seidel

• Computes one matrix row at a time
• Updates ith element using most up-to-date values
• Computation for a single iteration, n×n matrix:

1. for (0 ≤ i ≤ n-1)
2. xi := (bi - ∑0≤j≤n-1, j≠i Aij · xj) / Aii

• Can be reformulated in block form, N×N blocks, length M
1. for (0 ≤ p ≤ N-1)
2. v := b(p)
3. for each block A(pq) with q≠p
4. v := v - A(pq) x(q)
5. for (0 ≤ i ≤ M-1,i≠j)
6. x(p)i := (vi - Σ0≤j≤M A(pp)ij · x(p)j) / A(pp)ii

computes one
matrix block

at a time

6

Parallelising Gauss-Seidel

• Inherently sequential for dense matrices
− uses results from current and previous iterations

• Permutation has no effect on correctness of the result
− can be exploited to achieve parallelisation for certain sparse

matrix problems, e.g. [Koester, Ranka & Fox 1994]
• The block formulation helps, although

− requires row-wise access to blocks and block entries
− need to respect computational dependencies
− i.e. when computing vector block x(p)

use values from current iteration for blocks q < p
previous iteration for q > p

• Idea: propose to use wavefront techniques
− extract dependency information

7

Symbolic techniques for CTMCs

• Explicit matrix representation
− intractable for very large matrices

• Symbolic representations
− exploit regularity to obtain compact matrix storage
− also faster model construction, reachability, etc
− sometimes also beneficial for vector storage
− include Multi-Terminal Binary Decision Diagrams (MTBDDs),

matrix diagrams and Kronecker representation

• Here, work with MTBDDs and derived structures
− underlying data structure of the PRISM model checker
− enhanced with caching-based techniques that substantially

improve numerical efficiency

8

MTBDD data structures

• Recursive, based on Binary Decision Diagrams (BDDs)
− stored in reduced form (DAG), with isomorphic subtrees

stored only once
− exploit regularity to obtain compact matrix storage

9

Matrices as MTBDDs

• Representation
− root represents the whole matrix
− leaves store matrix entries, reachable by following paths from

the root node

10

Matrices as MTBDDs

• Recursively descending through the tree
− divides the matrix into submatrices
− one level, divide into two submatrices

11

Matrices as MTBDDs

• Recursively descending through the tree
− provides a convenient block decomposition
− two levels, divide into four blocks

12

A two-layer structure from MTBDDs

• Block decomposition, store as two sparse matrices
− enables fast row-wise access to blocks and block entries

[Par02, Meh04b]

13

Wavefront techniques

• An approach to parallel programming, e.g. [Joubert et al ’98]
− divide computation into tasks, form a schedule

• A schedule contains several wavefronts
− each wavefront comprises algorithmically independent tasks
− i.e. correctness is not affected by execution order

• The execution is carried out from one wavefront to another
− tasks assigned according to the dependency structure
− each wavefront contains tasks that can be executed in parallel

• Our approach
− tasks are determined by matrix blocks
− fast extraction of dependency information from MTBDD matrix

14

A two-layer structure from MTBDDs

• Block decomposition, store as two sparse matrices
− enables fast row-wise access to blocks and block entries

[Par02,Meh04b]

15

Dependency graph from MTBDD

• By traversal of top levels of MTBDD, as for top layer

16

Generating a wavefront schedule

• By colouring the dependency graph…

• Can generate a schedule to compute in waves from one
colour to another

17

Implementation

• Symbolic approach particularly well suited to wavefront
parallelisation of Gauss-Seidel
− can store full matrix at each node
− hence reduced communication costs, since only vector blocks

need to be exchanged

• Runs on Ethernet and Myrinet-enabled PC cluster [ZPK05a]
− use MPI (the MPICH implementation)
− prototype extension for PRISM
− various optimisations, load-balancing, etc

• Evaluated on a range of benchmarks
− good overall speedup
− within PRISM, currently only steady-state

18

Experimental results: models

• Parameters and statistics of models
− Include Kanban 9,10 and FMS 13, previously intractable
− All compact, requiring less than 1GB

19

Experimental results: time

• Total execution times (in seconds) with 1 to 32 nodes
− Termination condition maximum relative difference 10-6

− Block numbers selected to minimise storage

20

Experimental results: FMS speed-up

21

Experimental results: Kanban speed-up

22

Overview

• Probabilistic model checking technology…
− formulated, implemented and evaluated
− usable and useful!

• Scalability challenge
− state-space explosion has not gone away…

• Some approaches to tackle the problem
− parallelisation
− statistical model checking
− abstraction
− model reductions
− more…

23

Approximate verification

• Approximate probabilistic model checking
− sampling using Monte Carlo discrete-event simulation
− performed at modelling language level
− no need to build the probability/rates matrix
− more easily extended to a wider range of properties
− potentially huge number of samples for accurate answers

• Tool support:
− APMC [LHP06] – PCTL/LTL for D/CTMCs, distributed version
− also supported in PRISM (distributed version coming soon)

• Statistical hypothesis testing, acceptance sampling
− “bounded” properties, e.g. P<p[φ1 U≤t φ2]
− see e.g. Ymer [YS02]

24

Statistical probabilistic model checking

• Numerical method
− requires the solution of a linear equation system
− highly accurate results
− expensive for systems with many states
− in practice, approximate since solution usually iterative

• Statistical method
− work from the syntactic model description
− low memory requirements
− adapts to difficulty of problem (sequential)
− expensive if high accuracy is required

25

Numerical solution method

• Recall to verify P≥p [φ1 U[0,t] φ2] for CTMC C:
− compute probability of being in a state satisfying φ2 at time t

in modified model C[φ2][¬φ1 ∧¬φ2]

− using uniformisation, where γq·t,i are Poisson coefficients
− P≥p [φ1 U[0,t] φ2] holds in state s iff Prob(s, φ1 U[0,t] φ2)≥p

• Truncate the summation using Fox-Glynn with error ε
− if computed probability≥p, then Prob(s,φ1 U[0,t] φ2)≥p
− if computed probability≤p-ε, then Prob(s,φ1 U[0,t] φ2)≤p
− otherwise, we cannot tell if P≥p [φ1 U[0,t] φ2] holds
− complexity O(q·t) matrix-vector multiplications
− but ε = 10-10 possible with no performance degradation

()()∑∞

=
¬∧¬

⋅ ⋅⋅=
0i 2

i])φφ][φunif(C[
it,q2

t][0,
1 φP γ)φ U (φProb 212

26

Statistical solution method [YS02]

• Use discrete event simulation to generate sample paths
• Use sequential acceptance sampling to verify probabilistic

properties, for path formula ψ
− hypothesis: Prob(s,ψ)≥p

• Choose error bounds α,β
• Probability of false negative: ≤α

− we say that Prob(s,ψ)≥p is false when it is actually true
• Probability of false positive: ≤β

− we say that Prob(s,ψ)≥p is true when it is actually false

Not estimation!

27

Performance of test

actual probability θ=Prob(s,ψ)

pr
ob

ab
ili

ty
 o

f a
cc

ep
tin

g
Pr

ob
(s

,ψ
)≥

p
as

 tr
ue

θ

1-α

β

28

Ideal performance

actual probability θ=Prob(s,ψ)

pr
ob

ab
ili

ty
 o

f a
cc

ep
tin

g
Pr

ob
(s

,ψ
)≥

p
as

 tr
ue

θ

1-α

β

False negatives

False positives

29

Actual performance

θ-δ θ+δ

Indifference region

actual probability θ=Prob(s,ψ)

pr
ob

ab
ili

ty
 o

f a
cc

ep
tin

g
Pr

ob
(s

,ψ
)≥

p
as

 tr
ue

θ

1-α

β

False negatives

False positives

30

Sequential hypothesis testing

• Hypothesis: Prob(s,ψ)≥p

True, false,
or another
sample?

Number of samples

N
um

be
r

of
po

si
tiv

e
sa

m
pl

es

31

Sequential hypothesis testing

• We can find an acceptance line and a rejection line given θ,
δ, α and β

Aθ,δ,α,β(n)

Rθ,δ,α,β(n)

RejectReject

AcceptAccept

Continue samplingContinue sampling

Number of samples

N
um

be
r

of
po

si
tiv

e
sa

m
pl

es

Start here

Generate samples
using simulation

Continue until a
line is crossed

32

Verifying probabilistic properties

• Verify Prob(s,ψ)≥p with error bounds α and β
− generate sample paths using simulation
− verify ψ over each sample path
− if ψ is true, then we have a positive sample
− if ψ is false, then we have a negative sample
− use sequential acceptance sampling to test the hypothesis

• Complexity of the method
− number of samples: complex dependency on θ, δ, α and β
− length of sample paths

• expected length at most q·t (t time bound in ψ)
• shorter paths if ¬φ1 ∨ φ2 is satisfied early

− no direct dependence on size of state space

33

Tandem Queuing Network (results)
ve

rif
ic

at
io

n
tim

e
(s

ec
on

ds
)

size of state space
101 102 103 104 105 106 107 108 109 1010 101110−2

10−1

100

101

102

103

104

105

106

T=500 (numerical)
T=50 (")
T=5 (")
T=500 (statistical)
T=50 (")
T=5 (")

¬P≥0.5[true U[0,T] full]

ε=10−6
α=β=10−2

δ=0.5·10−2

34

Tandem Queuing Network (results)

n=255 (numerical)
n=31 (")
n=3 (")
n=255 (statistical)
n=31 (")
n=3 (")

Ve
rif

ic
at

io
n

tim
e

(s
ec

on
ds

)

T10−2

10−1

100

101

102

103

104

105

106

101 102 103 104

¬Pr≥0.5(true U≤T full)

ε=10−6
α=β=10−2

δ=0.5·10−2

35

Overview

• Probabilistic model checking technology…
− formulated, implemented and evaluated
− usable and useful!

• Scalability challenge
− state-space explosion has not gone away…

• Some approaches to tackle the problem
− parallelisation
− statistical model checking
− abstraction
− model reductions
− more…

36

Some ongoing research areas

• Abstraction and refinement, see e.g. [DJJL01, KNP06a]
− construct smaller, abstract model by removing

information/variables not relevant to property being checked,
iteratively refine abstraction if analysis fails

• Symmetry reduction [DM06, KNP06b]
− exploit replication of identical components

• Partial order reduction, see e.g. [BGC04, DN04, GNB+06]
− exploit commutativity of concurrently executed transitions

• Bisimulation quotient [KKZJ07]
− exploit bisimilarity to obtain reduced model

37

Future topics

• Counterexamples for probabilistic model checking
− compute tree-like counterexamples, see e.g. [HK07]

• Directed probabilistic model checking [AHL05]
− explore the model state space using heuristics

• Predicate abstraction for probabilistic models
− reduce possibly infinite-state systems

• Compositionality, see e.g. [dAHJ01, Che06, EKVY07]
− analyse full model based on analysis of sub-components

	Probabilistic Model Checking
	Overview
	Parallelisation
	Numerical solution for CTMCs
	Gauss-Seidel
	Parallelising Gauss-Seidel
	Symbolic techniques for CTMCs
	MTBDD data structures
	Matrices as MTBDDs
	Matrices as MTBDDs
	Matrices as MTBDDs
	A two-layer structure from MTBDDs
	Wavefront techniques
	A two-layer structure from MTBDDs
	Dependency graph from MTBDD
	Generating a wavefront schedule
	Implementation
	Experimental results: models
	Experimental results: time
	Experimental results: FMS speed-up
	Experimental results: Kanban speed-up
	Overview
	Approximate verification
	Statistical probabilistic model checking
	Numerical solution method
	Statistical solution method [YS02]
	Performance of test
	Ideal performance
	Actual performance
	Sequential hypothesis testing
	Sequential hypothesis testing
	Verifying probabilistic properties
	Tandem Queuing Network (results)
	Tandem Queuing Network (results)
	Overview
	Some ongoing research areas
	Future topics

